
When developing games, we often run into questions such as: How can AI characters 
get information from the world and how can they use that information to make 
informed decisions? 

1 



A real-world example: we have an AI character that needs to find a good location for 
engaging an enemy. That location should come with certain qualities, such as: 
 
1. Provide visibility of the enemy (otherwise firing a gun might have projectiles just 

hit obstacles). 
2. The new location ǎƘƻǳƭŘ ōŜ ŎƭƻǎŜ ǘƻ ǿƘŜǊŜ ǘƘŜ !L ƛǎ ŎǳǊǊŜƴǘƭȅ ƭƻŎŀǘŜŘ όƛǘ ŘƻŜǎƴΩǘ 

want to move far away). 
3. The new location should be close to covers in case the enemy fights back. 

 
We need a system that can ŜȄǇǊŜǎǎ ǘƘŜǎŜ ǿƛǎƘŜǎ ƛƴ ǘƘŜ ŦƻǊƳ ƻŦ άǉǳŜǊƛŜǎέΦ 

2 



For our new query system, we need the following features: 
 
1. It should be able to operate on any data type (e.g. not just 3D locations in the 

world, but maybe also 2D locations; areas for finding spawn locations; entities 
that represent a threat; etc.). 

2. It must be fully customizable by the game ς the game knows best what it can 
feed into the system and what it wants to get out of it. 

3. Debugging: it must be easy to see not only what is going on while the game is 
running, but also after a game play session has ended. 

4. Runtime parameters: some of the parameters that we would like to feed into the 
system might only be known at runtime (e.g. the current location of an AI 
character that starts a query). 

5. Complex situations: one query might not be enough to solve a problem, and 
maybe we need to try multiple ones. 

6. Multiple queries should run (conceptually) in parallel, as multiple AI characters or 
external systems may need to run queries at the same time. 

7. Data-driven: queries should not only be authored by coders, but primarily by 
technical designers. 

8. ±ŀƭƛŘŀǘƛƻƴΥ ǿŜ ƴŜŜŘ ǎƻƳŜ ǎƻǊǘ ƻŦ άǇƻǎǘ-ǾŀƭƛŘŀǘƛƻƴέ ǘƻ ŜƴǎǳǊŜ ŀƭƭ ǘƘŜ Řŀǘŀ ƘŀǾŜ 
been valid throughout a full query run. 
 

3 



Elements of a query: 
 
1. Generator: produce items 
2. Items: the list of objects to reason about 
3. Evaluators: process all items 
4. Functions: feed parameters into generators and evaluators 
5. Resulting items 

4 



Items can be any kind of objects the game wants to reason about in a query, e.g.: 
 
Å Vec3 (for finding the best location to move to during combat) 
Å Area (for deciding which area to populate next with zombies) 
Å EntityID (for finding the most dangerous enemy to attack next) 
 
The game can register any data type it wants the system to reason about. 
Example from beginning: locations in the 3D world represented as Vec3. 

5 



A Generator is responsible for producing items that the system needs to reason 
about. 
Instead of generating, it can also just gather already existing items from the world 
(e.g. annotated areas that a level-designer has placed). 
Example from beginning: produce 3D positions on the NavMesh within a certain 
range. 
 

6 



Evaluators can have 2 purposes: 
 
(1) Tell how good or bad an item is by providing a score between [0.0 .. 1.0]. 
(2) Decide to discard the item completely if that item violates a certain condition 

(e.g. if a raycast ƛǎ ǎǳǇǇƻǎŜŘ ǘƻ ǎǳŎŎŜŜŘ ōǳǘ ŘƻŜǎƴΩǘ ǘƘŜƴ ǊŜƧŜŎǘ ǘƘŜ ƭƻŎŀǘƛƻƴ ƛǘΩǎ 
testing for). 

 
Example from the beginning about fitness: the closer the location to the AI 
ŎƘŀǊŀŎǘŜǊΩǎ ŎǳǊǊŜƴǘ ƭƻŎŀǘƛƻƴΣ ǘƘŜ ōŜǘǘŜǊ ǘƘŜ ǎŎƻǊŜΦ 

Example from the beginning about filtering: location must have a line-of-sight to the 
enemy (otherwise discard that location). 

 
 

7 



Instant Evaluators: one-shot, immediately tells how good the item is (or whether to 
discard it); can be marked as either cheap or expensive. 
Example from beginning: score the distance between 2 locations. 
 
Deferred Evaluators: can run over time (multiple frames); implicitly counts as being 
expensive. 
Example from beginning: do an asynchronous raycast request (serviced by an 
external system), and wait until we get a response from that external system. 
 

8 



Functions have multiple purposes: 
 
(1) Give access to the current item the system is iterating on in the main loop. 
(2) Provide values of parameters for Generators, Evaluators and Functions 

themselves (in a nested way). 
(3) Give access to one of the global parameters (that have been passed in from the 

outside of the query). 
(4) Represent a literal value (e.g. for quick tweaking purposes). 
(5) Do some conversion/computation (e.g. add 2 vectors, return the resulting vector; 

or: given an entity as an item, return its position in the world). 

9 



Here, we have functions that ŀǊŜ ōŜƛƴƎ ŎŀƭƭŜŘ ƛƴ ŀ ƎǊŀǇƘΧ 
Χ ŀƴŘ ŀ DŜƴŜǊŀǘƻǊ ŀƴŘ 9ǾŀƭǳŀǘƻǊ ǘƘŀǘ ǊŜŎŜƛǾŜ ǘƘŜƛǊ ǇŀǊŀƳŜǘŜǊ ǾŀƭǳŜǎ ŦǊƻƳ ǘƘŜǎŜ 
calls. 

10 



An example for how an evaluator can get parameters passed in: 
The Distance evaluator receives the values of all of its 3 parameters (pos1, pos2, 
referenceDistance) via function calls ς which in turn can have parameters, being 
serviced by yet further function calls. 

11 



The query system comprises all the elements registered by the game code. 

12 



Abstract interfaces: used for implementing specific elements by game code. 
Abstract factories: for allowing the system to instantiate those elements at runtime. 
C++ templates live in between the core interfaces and the game code; they are 
meant to make it more convenient for programmers to register game-specific 
elements. 

13 



A code example of how a custom Function can be implemented and registered in the 
query system via a factory. 

14 


