=YK SAIN

GAME_AI_NORTH 17

Building a Scalable Query System
for Evaluating Complex Game Environments

Christian Werle

Game Al North
October 17-18t", 2017

When developing games, we often rumo questions such as: How can Al characters
get information from the world and how can they use that information to make
informed decisions?

Real-World Example

* Al wants to engage an Enemy

— Find a good location:
* Must have visibility to enemy
* Should be close to current location

e Should be close to covers

Y EK

)
<

A realworld example: we have an Al character that needs to find a good location for
engaging an enemy. That location should come with certain qualities, such as:

1. Provide visibility of the enemy (otherwise firing a gun might have projectiles just
hit obstacles).

2. Thenew locatiod K2dzft R 0SS Of2aS (2 6KSNBE GKS 'L
want to move far away).

3. The new location should be close to covers in case the enemy fights back.

We need a systemthatchE LINB & & G(GKSasS sAaKSa Ay (GKS 1

Operate on any data type
Customizable

Debugging Support

Runtime parameters

Solve complex situations

Run multiple queries in parallel
Data-driven

Validation

Required Features

Y EK

For our new query system, we need the following features:

1.

It shouldbe able to operate on any data type (e.g. not j[BBtlocations in the

world, but maybe als@Dlocations;areasfor finding spawn locationgntities

that represent a threat; etc.).

It must be fully customizable by the gampé¢he game knows best what it can

feed into the system and what it wants to get out of it.

Debugging: it must be easy to see not only what is going on while the game is
running, but also after a game play session has ended.

Runtime parameters: some of the parameters that we would like to feed into the
system might only be known at runtime (e.g. the current location of an Al
character that starts a query).

Complex situations: one query might not be enough to solve a problem, and
maybe we need to try multiple ones.

Multiple queries should run (conceptually) in parallel, as multiple Al characters or
external systems may need to run queries at the same time.

Datadriven: queries should not only be authored by coders, but primarily by
technical designers.

+fARFGA2YY 6S YyDERAR2VIZ2¥ZNI22 By &S
been validhroughout a full queryun.

Elements of a Query (1/6)

EEEEEN
EEEEEN EEENR
EEEREEN Evaluator 1 Evaluator 2 Evaluator 3

| Items |

Y TEK

Elementsf a query:

Generator: produce items

Items: the list of objects to reason about

Evaluators: process all items

Functions: feed parameters into generators and evaluators
Resulting items

arwpdE

Elements of a Query (2/6)

* Jtems
— Objects of a specific data type
— “Reasoning Domain”
— Example:
* Vec3

* Area
* EntitylD

Y EK

5

Items can be any kind of objects the game wants to reason about in a query, e.qg.:

Avecs3 (for finding the best location to move to during combat)
AArea (for deciding which area to populate next with zombies)
AEntityID(for finding the most dangerous enemy to attack next)

The game can register any data type it wants the system to reason about.
Example from beginning: locations in the 3D world represented as Vec3.

Elements of a Query (3/6)

* Generator -
— Produce or gather Items
— Create “Reasoning Space”
— Example:
* Points on a grid

* Areas ahead of the player
* Entities around the player

Y EK

6

A Generator is responsible fproducing items that the system needs to reason
about.

Instead of generating, it can also just gather already existing items from the world
(e.g. annotated areas that a levaésigner has placed).

Example from beginning: produce 3D positions onNla@Meshwithin a certain
range.

Elements of a Query (4/6)

* Evaluator @
— Fitness of Items: score [0.0 .. 1.0]

* Soft constraint
* Example: Distance (p1, p2)
— Filter Items

* Hard constraint
* Example: LineOfSightCheck (p1, p2)

Y TEK

Evaluators cahave 2 purposes:

(1) Tell how good or bad an item is by providing a score between [0.0 .. 1.0].
(2) Decide to discard the item completely if that item vioIa’Eesv a cgrtvain condition

(e.g.ifaraycasth & &ddzLJLI2aSR (2 &4dzOOSSR o6dzi R2Say
testing for).

Example from the beginning about fithess: the closer the location to the Al

OKI NI} OG4SNXa OdaNNByid f20F0A2y: (GKS o0Sdd:
Example from the beginning about filtering: location must have adirgight to the

enemy (otherwise discard that location).

Elements of a Query (5/6)

e Evaluator @
— Forms
* |nstantaneous

* Deferred

— Performance cost categories
* Cheap
* Expensive

Y EK

Q

Instant Evaluators: onshot,immediately tells how good the item is (or whether to
discard it); can be marked as either cheap or expensive.
Example from beginning: score the distance between 2 locations.

Deferred Evaluators: can run over time (multiple frames); implicitly counts as being
expensive.

Example from beginning: do an asynchrongastrequest (serviced by an

external system), and wait until we get a response from that external system.

Elements of a Query (6/6)

* Function
— Access current ltem

— Input Parameters of:
* Generators
* Evaluators
* Functions (“recursive”)

— Access Global Parameters
— Literal
— Converters

Function

Y EK

Functions have multiple purposes:

(1) Giveaccess to the current item the system is iterating on in the main loop.

(2) Provide values of parameters for Generators, Evaluators and Functions
themselves (in a nested way).

(3) Give access to one of the global parameters (that have been passed in from the
outside of the query).

(4) Represent a literal value (e.g. for quick tweaking purposes).

(5) Do some conversion/computation (e.g. add 2 vectors, return the resulting vector;
or: given an entity as an item, return its position in the world).

Function Model

Evaluator
CRYTEK
10
Here, we have functionsthatNE 6 SAy 3 OFft SR Ay I 3INI LIKX
X FYR I DSYSNIG2NI YR 9@ fdzr i2NJ GKI G NBO

calls.

10

Function Model Example

referenceDistance

Distance
=YK

11

Anexample for how an evaluat@an get parameters passed in:
The Distance evaluatoeceives the values of all of its 3 parameters (pos1, pos2,

referenceDistanceyia function callg which in turn can have parameters, being
serviced by yet further function calls.

11

What can be customized?

Iltem types
Generators
Evaluators

Functions

CY =K

The query system comprises all the elements registésethe game code.

12

How can it be customized?

* Abstract Interfaces
* Abstract Factories

* C++ Template Helpers

Y EK

13

Abstract interfaces: used for implementing specific elements by game code.
Abstract factories: foallowing the system to instantiathose elements atuntime.
C++ templats live in between the core interfaces and the game code; they are

meant to make it more convenient for programmers to register gaspecific
elements.

13

A code example of how a custdranction can be implemented and registered in the
guery system via a factory.

14

