Deep Delve: Digging Dwarf Al

Building an extensible Al architecture

(A AIN g

GAME_AI_NORTH 17

Our game and engine is written from the ground up with moddability in focus, and the
Al is no different. This presentation goes over how we do that!

This presentation

* About a game that is in progress.

* About how our Al Entity Component Systems are set up:

Blackboards, Abilities, Sensors, Utility Actions, Behaviors, Production chains!

* About how pathfinding and movement works.

The game is still WIP and a few things in this presentation are a bit speculative.
The presentation has two parts. First we look into how we manage entities, which

entity systems we have and how they interact. After that, we look at our solution for
movement and pathfinding.

Who am 1?7

Anders Elfgren
anders@warpzonestudios.com

@srekel

Plus these “indie” projects:

. — \ \\

Islands at War (2010)

Bouncy 2 (2010)

Cake — Character Animation Kickass Editor (2009-
2010)

Button Runner (2009-2010)

The Selfish Bird Breeder (2009)
Ragnarok (2009)

Candy Time (2008)

Robots in Saucers (2008)
Bouncy (2007)

Ragu (2007)

Math Jumper (2007)

Steam Empire (2006)

City Connect (2006)

SwecPower (2005)

A Violent World (2005)
Poppiluss (2005)

Village Simulator (2004)

Pocket Task Force (2001 -2010)

The game at a glance

2.5D - Command a Dwarven mining colony - Indirect control

So, like...
..Terraria, but no directly controllable character.
..Dwarf Fortress, but more casual, and more game than simulation.
.RimWorld, but more game than story-generator.

..Factorio, but more casual.

The game has a platformer perspective - slightly from above.

You control a colony of dwarves *indirectly?*
youdre lucky, the dwarves wil/ choose to do
that they wild/l want to ful fildl in addition

A very basic example of the game:

Two blue dwarves that need to decide what to do.

Dig gold, haul green dots, go to a building and craft something, or fight off the
invading red troll.

Depending on their skills and items they have many different options available to
them.

For example, a dwarf might be only able to walk to the end of a platform and then

jump to the next, whereas a more agile dwarf could sprint the last part and jump

farther. Or a dwarf could have a grappling hook or hookshot.

This means that we generally canét reuse pat
mention monsters).

If the dwarf in the bottom left chooses to mine, it should pick the gold in the middle of

the map, not the gold right next to him. So we need to do a path finding query to find

the real distance before we actually choose an action.

The Al at a glance

* Platformer-like, agent-specific traversal.
% Destructible tile-based terrain.

* Make decisions based on player’s orders as well as dwarf’s
personality.

* Mod-friendly, extensible.

% Allow for fine-tuned behavior.

With fAfine tuned behavior o, [mean it
special/unique attack, perhaps one tha
in front of the agent, and the attack is a swift move forward that pierces three

enemi es, and then moves back again to

The tech at a glance

* Custom engine built in C/C++

* Fixed-point math, fixed timestep

* Entity Component Systems

* Moddability and extensibility through these mechanisms:

o Compile chain included in game.

o CAPIs

Both engine code and entity management, including all systems, expose their

functionality via C APIs.

Some of the C APls have C++ wrappers-useor usa
the same APIs we will expose to modders.

Fixed point gives us determinism and universal precision.

We run the game at 10hz.

Cpp files in mods are handled as any other resource: compiled and inserted into our

data archiving system so that we can load and execute their hooks at runtime.

Part 1: Entity Management & Al Systems

Entities, Components & Systems

* Entity is 16 bit UID, [1-65535]
+ Drafar hachad ctrina 11T “fane” +A aniime

entity _component_system gamestate* gs);

entity_component_system* ecs);
entity component_system* ecs,
sys_ulé ids,
funcs,
Sys_ub4 num_sensors);

entity component_system* ecs,

entity entity,

sys_ulb sensor_id,
LI

Entities are simple 16 bit IDs, 1-65535 (ID zero means invalid)

Al systems generally require registering things by an UID rather than accessing by a
predetermined enum. Even though itds technic
that map to other things via internal system lookups seems like a better solution.

Example of the API for the sensor system in its current state.

Tag Ul Ds are currently 16 bit but wedll I i k€
chance of collision.

Create a component definition - a list of components.

Note gamevec3 for _game_ transform - fixed point, and vec3 for _graphics_ (floating
point).

From the component definition, create an entity definition.

Create entity and get ID back, store that ID or pass it to additional setup-functions.
Here we have already registered the sensor SENSOR_HAUL and now that we create
the entity we ensure that the entity uses it.

