
Our game and engine is written from the ground up with moddability in focus, and the 

AI is no different. This presentation goes over how we do that!



The game is still WIP and a few things in this presentation are a bit speculative.

The presentation has two parts. First we look into how we manage entities, which 

entity systems we have and how they interact. After that, we look at our solution for 

movement and pathfinding.





The game has a platformer perspective - slightly from above.

You control a colony of dwarves *indirectly*, so you place ñordersò in the world and if 

youôre lucky, the dwarves will choose to do that. The dwarves have personal desires 

that they will want to fulfill in addition to the playerôs orders.



A very basic example of the game:

Two blue dwarves that need to decide what to do. 

Dig gold, haul green dots, go to a building and craft something, or fight off the 

invading red troll.

Depending on their skills and items they have many different options available to 

them.

For example, a dwarf might be only able to walk to the end of a platform and then 

jump to the next, whereas a more agile dwarf could sprint the last part and jump 

farther. Or a dwarf could have a grappling hook or hookshot.

This means that we generally canôt reuse path finding between dwarves (not to 

mention monsters).

If the dwarf in the bottom left chooses to mine, it should pick the gold in the middle of 

the map, not the gold right next to him. So we need to do a path finding query to find 

the real distance before we actually choose an action.



With ñfine tuned behaviorò, I mean it should be possible to design something like a 

special/unique attack, perhaps one thatôs enabled when there are a group of enemies 

in front of the agent, and the attack is a swift move forward that pierces three 

enemies, and then moves back again to the agentôs original position.



Both engine code and entity management, including all systems, expose their 

functionality via C APIs.

Some of the C APIs have C++ wrappers for usability. We ñeat our own dog foodò - use 

the same APIs we will expose to modders.

Fixed point gives us determinism and universal precision.

We run the game at 10hz.

Cpp files in mods are handled as any other resource: compiled and inserted into our 

data archiving system so that we can load and execute their hooks at runtime.





Entities are simple 16 bit IDs, 1-65535 (ID zero means invalid)

AI systems generally require registering things by an UID rather than accessing by a 

predetermined enum. Even though itôs technically possible to extend enums, UIDs 

that map to other things via internal system lookups seems like a better solution.

Example of the API for the sensor system in its current state.

Tag UIDs are currently 16 bit but weôll likely change that to something that has less 

chance of collision.



Create a component definition - a list of components.

Note gamevec3 for _game_ transform - fixed point, and vec3 for _graphics_ (floating 

point).

From the component definition, create an entity definition. 

Create entity and get ID back, store that ID or pass it to additional setup-functions.

Here we have already registered the sensor SENSOR_HAUL and now that we create 

the entity we ensure that the entity uses it.


